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Abstract
A spin field effect transistor (FET) made of a nonballistic quantum wire with a
single transport channel is considered in the presence of a magnetic field. The
magnetic field includes either the externally applied field or the stray field due to
ferromagnetic contacts used as injector and collector. When a magnetic field is
applied the conductance fluctuations alter the spin precession and moreover spin
flip occurs if the magnetic field is perpendicular to the Rashba field. Necessary
conditions for a successful spin FET operation is obtained in the presence of a
magnetic field.

1. Introduction

Spin-polarized electron transport has been a subject of persistent interest [1, 2]. When
successfully combined with semiconductor functionalities [3–5] spin-based electronics or
spintronics may have considerable impact on future electronic device applications. The goal
of spintronics is to develop devices by employing the electron’s spin degree of freedom. One
of the representative spintronic devices is the so-called spin field effect transistor (spin FET)
proposed by Datta and Das [6]. The core idea of this device is to induce spin precession by the
Rashba spin–orbit interaction [7] in a two-dimensional electron gas (2DEG) and to use spin-
dependent materials, such as ferromagnets, for electron injectors and collectors so that they
sense the spin precession and the conductance of the device varies sinusoidally with the spin
precession angle.

While the initial proposal of Datta and Das assumes ballistic transport, in the absence of
magnetic field, it is still essential [8–13] to have a good understanding of how sensitive the
spin FET is to scattering events, and to external magnetic field. For example a sample may
not be as ideal as desired, and unintended impurities in the 2DEG may cause elastic scattering.
The scattering may also be caused by tunnelling barriers [14] introduced at the 2DEG–injector
(collector) interface to enhance the spin injection (detection) efficiency. In addition the spin
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Figure 1. Schematic diagram of a Datta–Das spin field effect transistor made of a nonballistic
single-channel quantum wire.

FET can be very sensitive to the magnetic field which may be intentionally applied or arise
from the stray field induced by the ferromagnetic electrodes [15].

Elastic scattering and external magnetic field can induce spin relaxation when combined
with spin–orbit interaction (see for instance [16]). Semiclassical Monte Carlo calculations
showed that the spin relaxation can be suppressed [8, 9, 17, 18] and the ideal sinusoidal
variation of the spin FET signal can be achieved. As the channel widthw of the 2DEG reduces,
quantum mechanical effects become more important, which may go beyond the semiclassical
treatment. Here we address the effect of impurity scattering in the vanishing width (w → 0)
limit by using a full quantum mechanical analysis. When w � h̄2/m∗α (α is the Rashba
coefficient and m∗ is the effective mass) the intersubband mixing between quantized subbands
(each of which provides a transport channel), emerging as a result of the quantization in the
transverse direction, can be neglected [6]. Moreover the number of available channels reduces
to two, including the spin degree of freedom, for sufficiently smallw. It was suggested [19] that
a spin FET with only one transverse mode is desired to achieve large current modulation and
low power consumption, and it is found that it exhibits interesting mesoscopic phenomena [20].

In [21] we showed the necessary condition for a successful nonballistic spin FET operation
in the absence of magnetic field. However, for realistic applications it is also necessary to treat
the influence of the magnetic field which may arise as a result of ferromagnetic metals being
used as the injector and collector [15]. Hence the present work will be an extension of our
previous paper [21], namely we investigate a spin FET made of a nonballistic quantum wire
(w → 0) with one transport channel, in the presence of a magnetic field (figure 1). Although
the magnetic field and the elastic scattering obviously affect the signal of the spin FET, what is
important is the issue of its sinusoidal modulation by the Rashba interaction. We address this
issue by employing a full quantum mechanical analysis (in the single-particle level) [22, 23]
of nonmagnetic scattering effects on such a one-dimensional (1D) spin FET. We find that with
a magnetic field parallel to the Rashba field, even though there is no spin relaxation, the spin
precession shows sample to sample fluctuations and that with the magnetic field perpendicular
to the Rashba field spin flip occurs. We found the necessary conditions for successful operation
of a nonballistic 1D spin FET influenced by an external magnetic field.

2. Zero magnetic field

For a nonballistic 1D spin FET in the absence of external magnetic field, the scattering effects
within the two spin channels can be expressed by the following effective mass single-particle
Hamiltonian:

H = p2
x

2m∗ + V (x)+ ασz
px

h̄
(1)

where the first term is the kinetic energy, V (x) is the nonmagnetic scattering potential causing
spin-conserved scattering (for w � h̄2/m∗α), and the last term represents the Rashba
interaction. α is the standard parameter measuring the strength of the Rashba interaction.
Its value can be controlled [24] by the gate electrode in figure 1. The Rashba term in the
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Hamiltonian is formally the same as the Zeeman term −gμBσ ·BR with an effective magnetic
field BR = −ẑ(α/gμBh̄)px which, unlike a real field, depends on the electron momentum. In
order to focus on the scattering effects within the quantum wire of length L, it is assumed that
V (x) is nonzero only in 0 � x � L. Hence the segment with length L describes the nonballistic
quantum wire while the regions x < 0 and x > L correspond to (fictitious) leads which are
free from any scattering (see figure 1). Though the introduction of them is rather arbitrary,
scattering effects within the quantum wire are still correctly described by this approach [25].
It is also supposed that the injector and the detector are ideal, both of which are 100% spin
polarized, and that the injection–detection efficiency is perfect1.

Following the scattering matrix approach [25], consider a left-incoming scattering state
ψ = c+ψ+ + c−ψ−, a superposition of the spin-up scattering state ψ+ = φ+χ+ and the
spin-down scattering state ψ− = φ−χ−. Here φ+(−) = exp[ik+(−)x] + r+(−) exp[−ik−(+)x]
for x < 0 and φ+(−) = t+(−) exp[ik+(−)x] for x > L, where E = h̄2k2+,−/2m∗ ± αk+,−.
The spinors are described by χ+ = (1, 0)T and χ− = (0, 1)T and the conservation of σz ,
[H, σz] = 0, is employed. Let θ0 and ϕ0 (θL and ϕL ) denote the polar and azimuthal angles
of the spin direction at x = 0� (x = L�) with respect to the z axis. Just before the injection
into the quantum wire, x = 0�, tan(θ0/2) = |c−/c+| and exp[iϕ0] = (c−/c+)/|c−/c+|. Right
after the transmission, x = L�,

tan
θL

2
=

∣
∣
∣
∣

c−
c+

t−
t+

∣
∣
∣
∣
, eiϕL = (c−/c+)

|c−/c+|
(t−/t+)
|t−/t+| ei(k−−k+)L . (2)

For the sake of simplicity it is supposed that injected electrons are polarized along the +x̂
direction (figure 1) and that the ratio c−/c+ is taken to be unity. In the equation above the
crucial term is the ratio t−/t+ determining the effects of the scattering on the spin precession.
For ballistic case t− = t+ = 1, thus θprec ≡ θL − θ0 = 0 and ϕprec ≡ ϕL − ϕ0 = 2m∗αL/h̄2.
Then as α varies the conductance, G ∝ cos2(ϕprec/2), of the ballistic spin FET exhibits a
sinusoidal variation.

To address nonballistic situations (mean free path l � L) the following gauge
transformation2 is utilized,

ψ̃ = ei(m∗αx/h̄2)σz ψ. (3)

In the absence of magnetic field, for a nonballistic spin FET in [21] it has been obtained that
the spin precession was inert to the scattering and that for the successful sinusoidal variation of
the spin FET signal a necessary condition, (7), should be fulfilled.

3. Effect of magnetic field

The external magnetic field Bext may be intentionally applied or it may arise from a stray
magnetic field [15] of ferromagnetic metals used as the electron injector/collector. We will
examine two cases: (i) when Bext is parallel to BR which is oriented along the +ẑ direction,
Bext ‖ BR, and next (ii) when Bext is perpendicular to BR, Bext ⊥ BR.

3.1. Parallel magnetic field

Consider the parallel case first and take Bext = B‖ ẑ. The Hamiltonian becomes

H = p2
x

2m∗ + V (x)+ ασz
px

h̄
− gμBσz B‖ (4)

1 We also ignore Fabry–Perot-type coherent multiple scattering effects between the injector and the detector discussed
by Mireles and Kirzcenow [4, 26].
2 A similar transformation has been exploited in [12].
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which commutes with σz and there are no fluctuations of the spin quantization axis. Without
a magnetic field the spin precession is inert to scattering [21]; with B‖, however, it is not inert
to scattering any more, as demonstrated below. For systematic analysis, we can perform the
gauge transformation in (3). Upon the transformation, the Schrödinger equations for ψ̃+ and
ψ̃− become h̃ψ̃+,− = Ẽ+,−ψ̃+,−, where h̃ = p2

x/2m∗ + V (x) and Ẽ+,− = Ẽ ± gμB B‖
with Ẽ = E + m∗α2/2h̄2. Note that the spin-up and spin-down components now obey a
spinless problem [12] with different effective energy. Taking into account this difference, the
transmission amplitudes and wavenumbers before and after the gauge transformation are related
as follows:

t+,−(E) = t̃(Ẽ+,−) (5a)

k+,−(E) = k̃(Ẽ+,−)∓ m∗α/h̄2. (5b)

Since h̃ is independent of α and B‖, information on spin precession can be extracted from (5a)
and (5b). For the ballistic case, t̃ = 1 regardless of energy, and thus θprec = 0 from (2).

For ϕprec = 0, taking into account (5b) results in ϕprec = 2m∗αL/h̄2 + δϕ
B‖
prec, where

δϕ
B‖
prec ≡ [(2m∗ Ẽ−/h̄2)1/2−(2m∗ Ẽ+/h̄2)1/2]L represents the additional spin precession caused

by B‖. For usual situations with gμB B‖,m∗α2/2h̄2 � E its α-dependent part is smaller than

2m∗αL/h̄2 by a factor (−1/4)(gμB B‖/E)(m∗α2/2Eh̄2)1/2 � 1 and thus δϕ
B‖
prec is essentially

independent of α.
For the nonballistic case, on the other hand, t̃ depends on energy. Then the ratio

t−(E)/t+(E) = t̃(Ẽ−)/t̃(Ẽ+) deviates from unity and depends on details of V (x). Thus
with nonzero B‖, the spin precession angles, (2), depends on V (x), i.e., the spin precession
angles are not inert to scattering any more. Note that since |t+(E)/t−(E)| 
= 1, not only ϕprec

but also θprec is affected by scattering. In comparison, in semiclassical treatments that ignore
the coherence in the orbital part, θprec should be strictly zero regardless of V (x) since the total
effective magnetic field BR + B‖ẑ is always along the z-axis. This result of the nonzero θprec

thus goes beyond the semiclassical treatments and indicates the importance of equal-footing
treatment of orbital and spin parts.

To estimate θprec, one can use the energy scale (Thouless correlation energy [27]) Ec ∼
(h̄vF/L)(l/L), where vF is the Fermi velocity3, over which |t̃| is correlated [25]. Then the
deviation of |t+(E)/t−(E)| from unity depends on the ratio gμB B‖/Ec. For gμB B‖ � Ec,
θprec = c1gμB B‖/Ec (in radians), where c1 is of order one. Its precise value shows sample-to-
sample fluctuations and, for a given sample, depends on E + m∗α2/2h̄2, with the correlation
energy scale given again by Ec. For gμB B‖ � Ec, on the other hand, θprec = c2 (radians),
where c2 is of order one. The value of c2 again shows sample-to-sample fluctuations and, within
a single sample, depends on E +m∗α2/2h̄2 and gμB B‖, with the correlation scale given by Ec.

We then address the variation of the conductance G as a function of α. For the ballistic
case, G shows the ideal sinusoidal variation with full magnitude, though ϕprec is shifted by the

essentially α-independent contribution δϕ
B‖
prec. For the nonballistic case, the sinusoidal variation

of G requires both t−(EF) = t̃(EF + m∗α2/2h̄2 − gμB B‖) and t+(EF) = t̃(EF + m∗α2/2h̄2 +
gμB B‖) to be essentially independent of α in the range αav −
α/2 < α < αav +
α/2, which
is possible only when




(
m∗α2

2h̄2

)

+ 2gμB B‖ = m∗αav
α

h̄2 + 2gμB B‖ � Ec. (6)

3 To be precise, vF is the Fermi velocity in the gauge-transformed system. However, when vF is sufficiently larger
than α/h̄, which is usually valid, the Fermi velocity in the original system is again comparable to vF and we may not
distinguish the two.
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Figure 2. Schematic plots of the conductance G , varying between zero and one in units of e2/h,
of a 1D Datta–Das spin FET as a function of the Rashba coefficient α. (a) Ideal sinusoidal
variation. (b) Sample-specific random signal due to conductance fluctuations. (c) Phase shifted
by B‖. (d) Phase shifted by a sample-specific random number and amplitude suppressed by a
sample-specific random factor.

In the presence of B‖, (6) is the generalization of the condition, below, found in [21] without
taking into account the magnetic field:




(
m∗α2

2h̄2

)

= m∗αav
α

h̄2
� Ec. (7)

For the case 
α = π h̄2/m∗L, the value for 
ϕprec = 2π in the ballistic case, (7) reduces
to L � l(h̄vF/παav), which can be satisfied simultaneously with the nonballisticity condition
l � L since αav/h̄ is usually smaller than vF.4 Figures 2(a) and (b) show schematic plots of
G as a function of α in two situations: (a) when (7) is satisfied and (b) when it is severely
violated. Note that, for given 
α, smaller αav is preferred by (7) for minimal damage by the
conductance fluctuations and that the amplitude of the G modulation is subject to sample-
to-sample fluctuations even when (7) is satisfied, since |t+,−|2 depends on details of the
nonballistic samples.

B‖ makes (7) more restrictive. When (6) is satisfied, θprec remains close to zero and ϕprec

grows linearly with α, ϕprec ≈ 2m∗αL/h̄2 + δϕ
B‖
prec, similar to the ballistic case. Figure 2(c)

shows a schematic plot of G as a function of α. Note the phase shift by δϕ
B‖
prec, compared

to 2(a). An insight may be gained by studying properties of the spin FET signal in situations
where (6) is not satisfied. We consider three such situations. First, when 
(m∗α2/2h̄2) � Ec

but 2gμB B‖ � Ec, the situation is essentially the same as the case without B‖ [21] and G
as a function of α shows sample-specific random variation (figure 2(b)) due to the random
fluctuation of |t+(EF)|2 ≈ |t−(EF)|2. Second, when 
(m∗α2/2h̄2) � Ec but 2gμB B‖ � Ec,
the two transmission amplitudes t+(EF) and t−(EF) are not correlated, though both of them
are essentially independent of α. The absence of the correlation modifies both ϕprec and θprec;

ϕprec acquires an additional contribution δϕNB
prec to become 2m∗αL/h̄2 + δϕ

B‖
prec + δϕNB

prec, where
δϕNB

prec = arg[t−(EF)/t+(EF)] is an essentially α-independent but sample-specific random
constant of order one (in radians). Similarly, θprec acquires a nonzero contribution, via (2),
which is an essentially α-independent but sample-specific random constant of order one (in
radians). In this situation, the spin FET still shows the sinusoidal modulation (see figure 2(d)),
though the modulation phase is shifted by a sample-specific random number due to the random
shift of ϕprec by δϕNB

prec, and the modulation amplitude is suppressed by the sample-specific

random factor cos θprec compared to the case without B‖ [21]. Third, when
(m∗α2/2h̄2) � Ec

and 2gμB B‖ � Ec, the amplitudes t+(EF) and t−(EF) are uncorrelated, and moreover vary

4 For example, αav/h̄vF ∼ 0.1 for In1−x Alx As/In1−x Gax .
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independently with α. Then both θprec and ϕprec show sample-specific random fluctuations of
order one (in radians) as α varies, and the ideal sinusoidal modulation of the spin FET signal is
replaced by sample-specific random fluctuations; see figure 2(b).

3.2. Perpendicular magnetic field

When the external magnetic field is perpendicular to the Rashba field, say Bext = B⊥ x̂ , the
Schrödinger equation becomes

(
p2

x

2m∗ + V (x)+ ασz
px

h̄
− gμB B⊥σx

)

ψ = ih̄∂tψ. (8)

Unlike in the parallel magnetic field case, σz is not conserved any more, [H, σz] 
= 0, since B⊥
flips the spin and leads to the spin relaxation in the nonballistic environment.

For successful operation of the spin FET, the spin flipping probability should be
small. Below we derive the condition for negligible spin flip. First we perform the gauge
transformation

ψ̃ = ei(gμB B⊥t/h̄)σxψ. (9)

In terms of the new wavefunction ψ̃ , the Schrödinger equation takes the form
(

p2
x

2m∗ + V (x)+ ασ · n̂(t)
px

h̄

)

ψ̃ = ih̄
∂

∂ t
ψ̃ (10)

where n̂(t) = ẑ cos(2gμB B⊥t/h̄)− ŷ sin(2gμB B⊥t/h̄). Note that the transformation removes
the Zeeman term at the expense of making the direction n̂ of the Rashba field time-dependent.
Note also that the absence of the spin flipping in the original gauge (ψ) is equivalent to the
adiabatic evolution of the spin in the transformed gauge (ψ̃). Such adiabatic spin evolution is
possible [28] if the spin precession angle 2m∗αL/h̄2 by the Rashba interaction alone is much
larger than that by B⊥ alone. For the α-modulation in the range αav −
α/2 < α < αav +
α/2
with 
α = π h̄2/m∗L, this consideration results in the condition

gμB B⊥ � Ec
2m∗αav L

h̄2 . (11)

(11), together with the constraint for weak conductance fluctuations, (7), identifies the
regime for successful spin FET operation in the presence of B⊥. An applied magnetic field
perpendicular to the 2DEG was shown to have little effect on the spin precession length [29].
Note that for given B⊥, (11) prefers a large αav, while smaller αav is preferred by (7) for the
minimal damage by the conductance fluctuations. Thus a careful tuning is necessary.

In the spin FET configuration originally proposed by Datta and Das, B⊥ may have a
nonvanishing value even when no field is applied externally, since the stray field generated
by the injector and collector is perpendicular to BR and can be as high as 1 T [15]. Thus
careful adjustment may be necessary to satisfy (11). One possible adjustment method is to
apply an external magnetic field, which is antiparallel to the stray field, so that the total B⊥
satisfies (11). Of course the strength of this counter field should be weaker than the coercive
field of the injector and collector. Otherwise it flips the magnetization direction of the injector
and collector, and the stray field becomes parallel to the external field.

4. Conclusion

In summary, we have studied a 1D Datta–Das spin FET made of a nonballistic quantum wire
and identified the necessary conditions, (6), (7) and (11), for the sinusoidal modulation of
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the spin FET signal in nonballistic environments. We suggest that the effects of impurity
scattering and magnetic field, which can be very harmful for the spin FET operation, can be
avoided by tuning the parameters of a spin FET to satisfy the inequalities (6), (7) and (11).
Using the obtained values in a recent experimental study on InGaAs/InP quantum wires [30],
[(m∗αav
α)/h̄2)]/Ec ∼ 0.01 and (gμB Bext)/[Ec(2m∗αav L/h̄2)] ∼ 10−5, confirming that our
conditions can be fulfilled.
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